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Abstract A

The probabilistic performance of a number of algorithms for the Satisfiabil-
ity Problem (SAT) has been investigated analytically and experimentally using a
constant-clause-sise model generating n clauses of k literals taken from r variables
as well as a constant-density model generating n clauses containing each of r vari-
ables independently with probability p. In the case of the constant-density model
one algorithm has been shown to solve SAT in polynomial time with probability
approaching 1 as n and r get large when p > In(n)/r and another has been shown
to solve SAT in polynomial time with probability approaching 1 as n and r get
large when p < In(n)/(2r). In the case of the constant-clause-sise model the unit
clause heuristic has been shown to be effective, in probability, when limy, ;o0 8/r <
2es(k—1)((k—1)/(k—2))s++(k~2)/k and another heuristic has been shown to be
effective, in probability, when limg, y.co 8/r < (1+In(k—1))-24s(k—2)/k for k > 3.
When & = 3 the unit clause heuristic with the next variable given an assignment
which satisfies the maximum number of clauses has been shown effective, in prob-
ability, when limg ..o n/7r < 3. Experiments have shown the existence of other
algorithms which perform better, in the probabilistic sense, than the algorithms
analysed.
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1. Research Objective

— The goal of this research is to develop and analyse algorithms which can, in some
practical sense, solve certain NP-complete problems efficiently. By solve we mean
determine whether a solution to a given instance of an NP-complete problem exists
where, for the problems we have considered, a solution is an assignment of values to
a list of variables which cause some predicate to be true. We do not consider actually
finding solutions when they exist since doing so adds unnecessary complexity to the
statement of the algorithms: the algorithms we consider can all be modified to find
solutions without significantly altering performance. NP-complete problems are
found in Crytology, Operations Research, Artificial Intelligence, Computer System
Design and many other areas. There is no known algorithm for any NP-complete
problem which runs in time bounded by a polynomial on the length of the input
(polynomial time) in the worst case nor is one likely to be found. We seek algorithms
which solve nearly every instance of specific NP-complete problems in polynomial
time. (—

To prove an algorithm 4 solves nearly every instance of a specific problem X in
polynomial time we establish a probability distribution D(n) on instances of X of
“sise® n (referred to as a model) and then show that A solves a random instance of
X generated according to D(n) in polynomial time with probability approaching 1
as n approaches infinity; then A is said to solve X efficiently in probability. Usually
the proof holds only under certain conditions. Sometimes, when D(n) is such as to
heavily favor the generation of instances with solutions, the weaker result that A
“proves® the existence of a solution to a random instance of X in polynomial time
with probabilily bounded from below by a constant greater than sero is obtained
instead; then A is said to solve X efficiently with bounded probability. Again, the
result holds only under certain conditions (one condition that must be satisfied is
that nearly all random instances generated according to D(n) have a solution). The
algorithms that we consider here “prove® the existence of a solution by repeatedly
chooeing a variable and an assignment to that variable until the predicate is true: at
each step the possible choices are ranked based on some heuristic and the top ranked
possibility is chosen. For the kinds of algorithms and distributions we consider, if
A solves X efficiently with bounded probability under some set of conditions then
we may regard this as strong evidence that the Backirack algorithm, using the
beuristics of A to decide the order in which to consider variables and assign values,
solves X efficiently in probability under the same set of conditions.
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The NP-complete problem we are primarily interested in is the Satisfiability
problem (SAT). An instance J of SAT is a boolean expression in conjunctive normal
form and a solution to that instance, if one exists, is a truth assignment to the
variables in 7 which cause J to have value true; such a truth assignment is said
to satisfy I. SAT remains NP-complete even if all disjunctions contain as few as
three literals. SAT is closely related to problems in Artificial Intelligence as well
as other NP-complete problems. Algorithms which solve SAT efficiently in some
probabilistic sense will, with slight modification, probably solve other NP-complete
problems efficiently in the same probabilistic sense.
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3. Status of the Research

Although there has been a significant level of research activity in this area no one
has succeeded in getting the results we have obtained for algorithms designed to
solve instances of SAT efficiently in some probabilistic sense.

Two models have been used for analysis: one is a constant-clause-sise model and
the other is a constant-density model. According to the constant-clause-sise model
a random instance of SAT contains n clauses (disjunctions) selected independently
and uniformly from the set of all possible disjunctions containing exactly k literals i
which can be composed from r boolean variables under the restriction that no two
literals in the same disjunction are associated with the same variable. We are
interested in the case k > 3 since SAT is NP-complete if clauses are allowed to have
three or more literals. For the special case & = 3 SAT is called 3-SAT. According
to the constant-density model a random instance of SAT contains n clauses each
generated independently as follows: for each of r variables (a) place into the clause,
with probability p/2, the uncomplemented literal associated with the variable, ()
place into the clause, with probability p/2, the complemented literal associated with
the variable and (c) place neither complemented nor uncomplemented literal into
the clause with probability 1 — p.

The following two algorithms solve SAT efficiently in probability under the
constant-density model when n and r are polynomially related. Let 7 be a random
instance of SAT.

Al: Repeat
Randomly choose a truth assignment ¢ for the variables in
Until ¢ satisfies J
Output(“a solution exists”)

A2: Search / for a null clause
H a null clause was found Thea Output(“no solution exists”)
Else Output(“cannot determine whether a solution exists”)




In [3] it is shown that Al solves SAT eficiently in probability whea p > In(n)/r
and A2 correctly determines that no solution exists for a random instance of SAT
with probability approaching 1 as n and r approach infinity when p < In(n)/(2r).
Thus, under the constant-density model, SAT is solved efficiently in probability by
algorithms A1 and A2 for all but a vanishingly small range of values of p if » and r are
polynomially related (it is easy to see why this is a reasonable restriction). Although
these results are theoretically interesting they have little practical meaning since it
is unlikely that a random truth assignment satisfies a random instance of SAT and
that a random instance of SAT contains a null clause. The results obtained for the
constant-clause-sise model are probably more meaningful.

Assuming the constant-clause-sise model, the algorithms below solve SAT ef-
ficiently with bounded probability under various conditions. The algorithms are
defined using the following symbols, terms and functions. Let V = {v;,v;,...,v,} be
the set of r variables from which clauses are compoeed and let L = {v;,¥,,...,%,¥,}
be the set of 2r literals associated with V (the set of literals contained in a clause
¢ is a subset of L such that for all 1 < § < r both v; and ¥; do not appear
in ¢). For every u € L, var(u) is the variable associated with u (for example,
var(vy) = var(0,) = v;). Forall1 <§i<r, v € L and ¥; € L are said to be
complementary literals. For every u € L, comp(u) is the literal in L which is com-
plementary to u (for example, comp(¥;) = v;). If a clause contains only one literal
it is called a unit clause and a unit clause may be regarded as being a literal. Let J
be a random instance of SAT generated according to the constant-clause-sise model.
Let | u | denote the number of occurrences in I of literal u.

AS8: Repeat
If there is a unit clause / in J Then w «{
Else choose ¥ randomly from L
Remove from 7 all clauses containing
Remove from [ all occurrences of comp(s)
L «~ L - {u,comp(u)}
Until 1 is empty or there exist two complementary unit clauses in J
H I is empty Then Output(®a solution exists”)
Else Output(“cannot find a solution®)
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Ad: Repeat
If there is a unit clause [ in J Then « « |
Else begin
Choose v randomly from V
Hlv|>|V|thenwe—velse y =~ ¥
d

Remove from I all clauses containing «
Remove from 7 all occurrences of comp(u)
V « V = {var(y)}
L « L — {s,comp(u)}
Until I is empty or there exist two complementary unit clauses in J
If I is empty Then Output(“a solution exists”)
Else Output(“cannot find a solution”)

AS5: Repeat
Let ¢ be a smallest clause in J
Choose u randomly from ¢
Remove from I all clauses containing «
Remove from [ all occurrences of comp(u)
Until I is empty or there exist two complementary unit clauses in J
i I is empty Then Output(*a solution exists®)
Else Output(“cannot find a solution”)

In [4] the results below are obtained based on the constant-clause-sise model.
In this analysis the parameter k is assumed fixed and n and r are allowed to grow
toward oo.

1. There exists a constant d and a constant ¢ > d such that a random in-
stance of SAT has a solution with probability approaching 1 as n,r — oo if
limg p—0o 8/r < —d/In(1-2-%) and a random instance of SAT has no solution
with probability approaching 1 as n,r — 00 if limg y.o 8/r > —¢/In(1—2"%),

2. Neither Al nor A3 solve SAT efficiently in probability or with bounded prob-
ability for any fixed (function of k) limiting ratio n/r

3. Algorithm AS solves SAT efficiently with bounded probability if

-1 (k-1

lim nfr< — (k_:i).-’ Jork2>3

n,r=000 k




and does not solve SAT with probability approaching 1 when

lim n/r> -zh;‘(k-l

®,r=sco k k-2

).-’ Jork2>3

4. Algorithm A4 solves SAT efficiently with bounded probability if
lim n/r<28 whenk=3
N,F=+00

and does not solve SAT with probability approaching 1 when
im n/r>28 andk=3
WY )

5. Algorithm AS solves SAT efficiently with bounded probability if

lim n/r< Z:i.-—’(l-l-ln(k-l))

%,F—+00

for the case k> 3 and if
lim n/r<3 forthecascek=3

B, F—400

The two algorithms below have been studied experimentally using the constant-
clause-sise model with & = 3. These algorithms dynamically assign weights to each
literal in L and these weights are used to select the next literal. The weighting
functions are defined as follows:

u(,) = Z z-a‘u(e)

ces(l)

wp(= JJ (1-27)
c€P(l)

where S({) is the collection of clauses in I containing literal I, P({) is the collection of
clauses resulting from removing clauses containing ! and all occurrences of comp({)
from I and size(c) is the number of literals contained in clause ¢ if ¢ has not been
removed from J and sise(c) = 0o otherwise. It should be noted that size{c) = &k
for all ¢ in a random instance of SAT generated according to the constant-clause-
sise model but sizse(c) changes as literals are removed or when ¢ contains the next
chosen literal in the algorithms below. It should also be noted that wg(l) is &
measure of the expected number of solutions that exist for an instance of SAT with
var(l) set s0 that literal | has value true; choosing a truth assignment to maximise
the expected number of solutions to the remainder of the instance seems to be a
reasonable heuristic and is the basis for algorithm AY.
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AG: Repeat
se—l:leL, Vel uwl)2uwl)
Remove from [/ all clauses containing «
Remove from 7 all occurrences of comp(s)
L « L - {u,comp(s)}
Until I is empty or there exist two complementary unit clauses in /
I I is empty Then Output(®a solution exists®)
Else Output(“cannot find a solution®)

AT: Repeat
sel:leL, YWeLl wg(l) 2wg(l)
Remove from 7 all clauses containing u
Remove from [ all occurrences of comp(u)
L « L - {u,comp(u)}
Until ] is empty or there exist two complementary unit clauses i J
I I is empty Then Output(“a solution exists®)
Else Output(®cannot find a solution®)

In (5] the following results of experiments on AG and A7 using the constant-
clause-size model to generate random instances are reported:

6. Algorithm AG solves SAT efficiently with bounded probability if

lim n/r<3.7 whenk=3

B,F=600

and does not solve SAT with probability approaching 1 if
lim n/r>38 whenk=3

n,r—s00

7. Algorithm AT solves SAT efficiently with bounded probability if

lim n/r<36 whenk=3
N,F=000

and does not solve SAT with probability approaching 1 if
lim n/r>37 whenk=3

N, F=+00
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8. A random instance of SAT generated according to the constant-clause-sise
model has no solution with probability approaching 1 when n,r — oo if

lim nfr<4 whenk=38

B,F=000

9. A random instance of SAT generated according to the constant-clause-sise
model has a solution with probability approaching 1 when n,r — oo if

im n/r>4 whenk=3
| WY

3. Interpretation of Results

The constant-clause-sise model seems to generate non-trivial instances of SAT since
the simple-minded algorithms A1 and A3 which work so well on instances gener-
ated by the constant-density model do not work at all well on random instances
generated according to the constant-clause-sise model when the limiting ratio of
n/r is fixed (i.e. a function of k). The case of the limiting ratio of n/r being fixed is
important since random instances are *hardest® when the probability that a solu-
tion exists is about 1/2 and this occurs when the limiting ratio is fixed. Despite the
relatively *hard” instances generated by the constant-clause-sise model a number of
algorithms have been shown to “prove® that a solution to a given random instance
I of SAT exists for nearly every I that has a solution when &k = 3; these algorithms
are not quite as effective for arbitrary k.

Perhaps surprising is the difference in the range of n/r over which algorithms
perform well probabilistically. In particular, A8 and A6 are not much different in
structure but the bound on the limiting ratios of n/r for which good probabilistic
performance is achieved is larger for A8 by a factor of about In(k). Furthermore,
from a previous result (2], the bound on ratios n/r for which good probabilistic
performance of the pure literal heuristic is achieved does not even increase with &
while the bounds for AS,A4 and A5 are all exponential in k.

We have been able to rank a number of algorithms for solving SAT by their
probabilistic performance. One of these algorithms has been shown experimentally
to be extemely effective on instances of 3-SAT when those instances have solutions.
We have not yet succeeded in producing an algorithm for SAT which, under the
constant-clause-sise model, is effective in determining that no solution exists when
its input is an instance with no solution. This is the next step in this research.
After this we intend to apply the algorithms and analysis mentioned here to other
NP-complete problems.
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